home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
PC Media 23
/
PC MEDIA CD23.iso
/
share
/
prog
/
newmat
/
newmatnl.cpp
< prev
next >
Wrap
C/C++ Source or Header
|
1995-01-11
|
6KB
|
184 lines
//$$ newmatnl.cpp Non-linear optimisation
// Copyright (C) 1993,4,5: R B Davies
#define WANT_MATH
#define WANT_STREAM
#include "newmatap.h"
#include "newmatnl.h"
void FindMaximum2::Fit(ColumnVector& Theta, int n_it)
{
Tracer tr("FindMaximum2::Fit");
Real z,w,x,x2,g,l1,l2,l3,d1,d2,d3;
ColumnVector Theta1, Theta2, Theta3;
int np = Theta.Nrows();
ColumnVector H1(np), H3, HP(np), K, K1(np);
Boolean oorg, conv;
int counter = 0;
{ // subblock so won't have labels in same
// block as destructors.
// I know it is supposed to be evil to
// use "goto". Nevertheless this seems
// to be the best way of coding the
// algorithm, even in C++.
Theta1 = Theta; HP = 0.0; g = 0.0;
Start:
tr.ReName("FindMaximum2::Fit/Start");
Value(Theta1, TRUE, l1, oorg); if (oorg) Throw(DataException(Theta));
Restart:
tr.ReName("FindMaximum2::Fit/ReStart");
conv = NextPoint(H1, d1); if (conv) goto Convergence;
if (counter++ > n_it) goto Fail;
z = 1.0 / sqrt(d1);
H3 = H1 * z; K = (H3 - HP) * g; HP = H3;
g = 0.0; // de-activate to use curved projection
if (g==0.0) K1 = 0.0; else K1 = K * .2 + K1 * .6;
// (K - K1) * alpha + K1 * (1 - alpha) = K * alpha + K1 * (1 - 2 * alpha)
K = K1 * d1; g = z;
Continue:
tr.ReName("FindMaximum2::Fit/Continue");
Theta2 = Theta1 + H1 + K;
Value(Theta2, FALSE, l2, oorg);
if (counter++ > n_it) goto Fail;
if (oorg)
{ H1 = H1 * 0.5; K = K * 0.25; d1 *= 0.5; g *= 2.0; goto Continue; }
d2 = LastDerivative(H1 + K * 2.0);
Interpolate:
tr.ReName("FindMaximum2::Fit/Interpolate");
z = d1 + d2 - 3.0 * (l2 - l1);
w = z * z - d1 * d2;
if (w < 0.0) goto Extrapolate;
w = z + sqrt(w);
if (1.5 * w + d1 < 0.0) goto Extrapolate;
if (d2 > 0.0 && l2 > l1 && w > 0.0) goto Extrapolate;
x = d1 / (w + d1); x2 = x * x; g /= x;
Theta3 = Theta1 + H1 * x + K * x2;
Value(Theta3, TRUE, l3, oorg);
if (counter++ > n_it) goto Fail;
if (oorg)
{
if (x <= 1.0)
{ x *= 0.5; x2 = x*x; g *= 2.0; d1 *= x; H1 = H1 * x; K = K * x2; }
else
{
x = 0.5 * (x-1.0); x2 = x*x; Theta1 = Theta2;
H1 = (H1 + K * 2.0) * x;
K = K * x2; g = 0.0; d1 = x * d2; l1 = l2;
}
goto Continue;
}
if (l3 >= l1 && l3 >= l2) { Theta1 = Theta3; l1 = l3; goto Restart; }
d3 = LastDerivative(H1 + K * 2.0);
if (l1 > l2)
{ H1 = H1 * x; K = K * x2; Theta2 = Theta3; d1 = d1*x; d2 = d3*x; }
else
{
Theta1 = Theta2; Theta2 = Theta3;
x -= 1.0; x2 = x*x; g = 0.0; H1 = (H1 + K * 2.0) * x;
K = K * x2; l1 = l2; l2 = l3; d1 = x*d2; d2 = x*d3;
if (d1 <= 0.0) goto Start;
}
goto Interpolate;
Extrapolate:
tr.ReName("FindMaximum2::Fit/Extrapolate");
Theta1 = Theta2; g = 0.0; K = K * 4.0; H1 = (H1 * 2.0 + K);
d1 = 2.0 * d2; l1 = l2;
goto Continue;
Fail:
Throw(ConvergenceException(Theta));
Convergence:
Theta = Theta1;
}
}
void NonLinearLeastSquares::Value
(const ColumnVector& Parameters, Boolean, Real& v, Boolean& oorg)
{
Tracer tr("NonLinearLeastSquares::Value");
Y.ReDimension(n_obs); X.ReDimension(n_obs,n_param);
// put the fitted values in Y, the derivatives in X.
Pred.Set(Parameters);
if (!Pred.IsValid()) { oorg=TRUE; return; }
for (int i=1; i<=n_obs; i++)
{
Y(i) = Pred(i);
X.Row(i) = Pred.Derivatives();
}
if (!Pred.IsValid()) { oorg=TRUE; return; } // check afterwards as well
Y = *DataPointer - Y; Real ssq = Y.SumSquare();
errorvar = ssq / (n_obs - n_param);
cout << "\n" << setw(15) << setprecision(10) << " " << errorvar;
Derivs = Y.t() * X; // get the derivative and stash it
oorg = FALSE; v = -0.5 * ssq;
}
Boolean NonLinearLeastSquares::NextPoint(ColumnVector& Adj, Real& test)
{
Tracer tr("NonLinearLeastSquares::NextPoint");
QRZ(X, U); QRZ(X, Y, M); // do the QR decomposition
test = M.SumSquare();
cout << " " << setw(15) << setprecision(10)
<< test << " " << Y.SumSquare() / (n_obs - n_param);
Adj = U.i() * M;
if (test < errorvar * criterion) return TRUE;
else return FALSE;
}
Real NonLinearLeastSquares::LastDerivative(const ColumnVector& H)
{ return (Derivs * H).AsScalar(); }
void NonLinearLeastSquares::Fit(const ColumnVector& Data,
ColumnVector& Parameters)
{
Tracer tr("NonLinearLeastSquares::Fit");
n_param = Parameters.Nrows(); n_obs = Data.Nrows();
DataPointer = &Data;
FindMaximum2::Fit(Parameters, Lim);
cout << "\nConverged\n";
}
void NonLinearLeastSquares::MakeCovariance()
{
if (Covariance.Nrows()==0)
{
UpperTriangularMatrix UI = U.i();
Covariance << UI * UI.t() * errorvar;
SE << Covariance; // get diagonals
for (int i = 1; i<=n_param; i++) SE(i) = sqrt(SE(i));
}
}
void NonLinearLeastSquares::GetStandardErrors(ColumnVector& SEX)
{ MakeCovariance(); SEX = SE.AsColumn(); }
void NonLinearLeastSquares::GetCorrelations(SymmetricMatrix& Corr)
{ MakeCovariance(); Corr << SE.i() * Covariance * SE.i(); }
void NonLinearLeastSquares::GetHatDiagonal(DiagonalMatrix& Hat) const
{
Hat.ReDimension(n_obs);
for (int i = 1; i<=n_obs; i++) Hat(i) = X.Row(i).SumSquare();
}